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Abstract 

Salient distractors often capture our attention, disrupting ongoing tasks. Recent 

studies suggest that, through statistical learning, prior experiences regarding distractor 

locations can reduce distraction by suppressing their corresponding locations. 

However, the proactive neural mechanisms supporting this learned suppression 

remain unclear. Our findings demonstrate that participants learn to suppress locations 

that are more likely to contain distractors relative to other locations. Using frequency 

tagging in electroencephalography (EEG) recordings, we observed significantly 

different tagging responses between high- and low-probability locations, along with a 

general decrease in alpha power (8–12 Hz) prior to search onset. Notably, the higher 

tagging frequency power at high-probability locations suggests that participants 

allocated greater attentional focus to these locations in anticipation of the search. 

These results suggest that anticipatory attentional deployment precedes the 

suppression of high-probability distractor locations after the onset of visual search. 

Keywords: attentional selection, statistical learning, distractor suppression, frequency 

tagging 
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Introduction 

In everyday life, we embrace lots of visual information from the environment, but 

cannot process all of them at once. To act and behave in a goal-directed manner, we 

focus our limited resources on relevant information and filter out distracting 

information (Johnston & Dark, 1986) . Although selective attention is an effective 

mechanism that determines what we see and act upon, our attention may be captured 

by salient distractors. One efficient way to suppress these distractors is learning from 

past experiences (regularities) regarding distractors (Theeuwes et al., 2022; Wang & 

Theeuwes, 2018a, 2018b) via a mechanism called statistical learning (SL, Turk-

Browne et al., 2005). For example, behavioral studies have established that learning to 

expect where distractors are most probable during visual search can help suppress 

these distractors and facilitate upcoming search (Ferrante et al., 2018; Goschy et al., 

2014; Leber et al., 2016; Sauter et al., 2018; Wang & Theeuwes, 2018a, 2018b, 

2018c). While this effect has been established many times, the neural mechanism 

regarding learned suppression remains less clear, especially whether this type of 

suppression can be implemented proactively, by modulating different distractor 

locations separately. 

To this aim, we adopted electroencephalogram (EEG) recordings in humans when 

performing the additional singleton task (Theeuwes, 1992), in which participants were 

required to search for a unique shape (target) while ignoring a salient distractor. 

Notably, the salient distractor was presented more often in one specific location than 

in other three locations in the learning condition, introducing statistical learning which 

should result in the suppression of the frequent distractor location. To track the pre-

stimulus attentional distribution due to learned suppression, a technique called 

frequency tagging (Ding et al., 2006; Malinowski et al., 2007; Morgan et al., 1996; 

Muller et al., 2003; Zhigalov et al., 2019) was used to separately assess frequency 

tagging response to different distractor locations. If learned suppression operates 

through proactive attention mechanism, we expect corresponding neural activity 

would emerge before the stimulus onset. We also measured alpha activity 
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simultaneously, as alpha-band activity is considered to be a neural signature of 

functional inhibition (Foxe & Snyder, 2011; Jensen & Mazaheri, 2010; Klimesch et 

al., 2006), and is strongly modulated by spatial attention (Sauseng et al., 2005).  

Methods 

Participants  

Twenty-eight undergraduate students (20 women and 8 men with a mean age of 

20 years, pre-determined based on Wang et al., 2019) participated in this experiment. 

The study was approved by the ethics committee at South China Normal University 

(2020-3-013), and all participants provided written informed consent before taking 

part. They were all right-handed, had normal or corrected-to-normal vision, and were 

financially compensated (¥70 per hour). 

Apparatus and Stimuli 

Stimulus presentation and behavioral data collecting were controlled by custom 

scripts written in Python and run on a 27-inch computer with a 1920 × 1080 

resolution and a refresh rate of 60 Hz. Participants were seated in a sound-attenuated 

and dimly lit laboratory at a viewing distance of 60 cm. All stimulus were presented 

against a black background (Red-green-blue [RGB]: 0, 0, 0) with a white fixation dot 

(RGB: 255, 255, 255, radius: 0.25°) presented in the center of the screen. Four gray 

(RGB: 128, 128, 128) placeholders (2° × 2°) were presented 4° away from the 

fixation. The search array consisted of four discrete stimuli with different shapes (one 

circle among three unfilled diamonds, or vice versa) superimposed on the gray 

placeholders. The circle had a radius of 1° and the diamond was subtended 2° × 2°. 

Each shape had a red (RGB: 255, 0, 0) or green (RGB: 0, 255, 0) outline, and a 

vertical or horizontal white line (0.2° × 1.4°) inside (see Fig. 1A).  

Procedure and Design 

During the experiment, participants were instructed to search for a unique shape 

(a circle among diamonds or vice versa) while ignoring a salient distractor (red or 

green, which was noticeably different in color from the other search elements). 
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Participants had to indicate the orientation (horizontal or vertical) of the line within 

the target shape. They were asked to respond as fast and as accurately as possible. 

Each trial began with a fixation dot (100-300 ms), followed by four gray placeholders 

that flickered (tagged) for 1250 ms. Subsequently, the search array was presented for 

2000 ms, with those four gray placeholders continued to flicker. Notably, participants 

were explicitly instructed to ignore the tagging placeholders, ensuring their attention 

remained focused on the primary visual search task and not diverted to the tagging 

backgrounds. The inter-trial interval was between 500-700 ms (see Fig. 1A). 

Before the experiment, participants received verbal instructions and completed 

15 practice trials to be familiar with placeholder tagging and the experimental task. 

Each participant completed 5 blocks for the baseline condition and 10 blocks for the 

learning condition. Each block comprised of 120 trials, with 40 distractor-absent trials 

and 80 distractor-present trials. In the baseline condition, which was performed before 

the learning condition to avoid any contamination from learning, the salient distractor 

was equally presented in four locations, with a 25% probability each. In the learning 

condition, the salient distractor was presented in either the top or bottom location 

(which was counterbalanced between participants) with a probability of 66.25%, 

while was equally presented in other three locations with a probability of 11.25% each. 

The target was randomly selected from non-distractor locations in both conditions, 

resulting in no clue for participants to figure out where the target would be. More 

blocks for the learning condition were designed to examine whether any effect 

observed was due to that the baseline condition was tested firstly for all participants 

(see the last paragraph in the Results section for more details).   

Notably, we deliberately chose not to present the high-probability location 

laterally because alpha lateralization effects could be confounded by bilateral 

electrode changes, rather than specifically reflecting modulation of the high-

probability location. For instance, findings from Wang et al. (2019) suggest that any 

observed increase in alpha power contralateral to the high-probability location might 

partially arise from decreases in power contralateral to the low-probability location. 
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Frequency Tagging 

Frequency tagging refers to the presentation of visual stimuli that tag at specific 

frequencies, resulting in steady-state visual evoked fields which can be observed in 

EEG signals (Norcia et al., 2015). Here we employed four different frequencies (2.4 

Hz, 4.29 Hz, 5.45 Hz, and 7.5 Hz) for each placeholder before and after the search 

display onset, allowing us to track attentional distribution over time. These 

frequencies were counterbalanced between participants. The criteria for selecting 

these frequencies were, 1) to avoid any overlap with alpha oscillation (8-12 Hz) which 

was one of the primary foci in our study; 2) to prevent any high frequencies (>12 Hz) 

that may cause discomfort for participants; 3) to ensure that each frequency was not a 

harmonic of another; 4) to ensure that the number of frames corresponding to the 

frequency is an integer. Our monitor’s refresh rate was 60 Hz, resulting in 25, 14, 11 

and 8 frames for 2.4 Hz, 4.29 Hz, 5.45 Hz, and 7.5 Hz respectively (see Fig. 1B). 

These frequencies corresponding to different locations were counterbalanced between 

participants.  

EEG Recording and Preprocessing  

EEG data were acquired using 64 Ag/AgCl active electrodes connected to 

BrainAmp amplifiers (Brain Products, Munich, Germany), placed according to the 

extended 10-20 system and digitalized at 500 Hz. Here electrodes T8 and FT10 were 

used to record the vertical electro-oculogram (EOG), and electrodes T7 and FT9 were 

used to record horizontal EOG; moreover, electrodes TP9 and TP10 were used to 

record signals from mastoids, and electrode Fz was used as on-line reference.  

The data were re-referenced to the mean of left and right mastoids and high-pass 

filtered using a cut-off of 1.5 Hz (for independent component analysis [ICA] only) 

and 0.1 Hz (for final analyses). Continuous EEG was epoched from –2000 to 4750 ms 

relative to the placeholder onset. Malfunctioning electrodes were visually detected 

and temporally removed from the data; and a 110–140 Hz bandpass filter was used to 

capture muscle activity and allowed for variable z-score cutoffs per participant based 

on the within-subject variance of z scores. After trial rejection, ICA was performed on 
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the clean electrodes only. Together with the vertical and horizontal EOG signals, we 

visually inspected and removed ICA components that captured eye blinks, eye 

movement, or other artifacts that were clearly not brain-driven activity. Afterwards, 

we interpolated the malfunctioning electrodes identified earlier. Offline preprocessing 

was performed using MATLAB v2016 (MathWorks Inc.), incorporating 

EEGLab2020_0 and custom MATLAB scripts. 

Time-Frequency Analysis 

Preprocessed EEG data were broken into event-related epochs (–2000 to 4750 

ms relative to placeholder onset; avoiding edge artifacts from wavelet convolution), 

and then were convolved with a set of Morlet wavelets with frequencies including 2.4 

Hz, 4.29 Hz, 5.45 Hz, 7.5 Hz, 8 Hz, 9 Hz, 10 Hz, 11 Hz, 12 Hz, 20 Hz, 25 Hz, 30 Hz. 

The number of wavelet cycles was logarithmically spaced between 3 and 12 to have a 

good trade-off between temporal and frequency precision. This might result in a 

potential overlap between neighboring frequencies. However, the selected frequencies 

corresponding to different locations were counterbalanced between participants, 

preventing such potential overlapping effects. Because each frequency selected for the 

high-probability location was just one of several frequencies selected within the alpha 

band, making it unlikely that its activity alone can represent the full alpha-band 

activity. Furthermore, even when we varied the number of cycles (1.5, 1.6, 1.7, 1.8, 

1.9, and 2 times the corresponding frequencies) to better differentiate between tagging 

frequencies and to keep the temporal resolution fixed, the results remained consistent 

(see Fig. S3 for details). The power within our focused time window (0 – 3250 ms) 

was then averaged across trials and decibel-transformed relative to a pre-stimulus 

period of -500 to -300 ms relative to the placeholder onset. We did not calculate 

phase-locked activity for further analysis because our task required participants to 

switch their attention across different search elements to search for the target. As a 

result, the neural activity produced by statistical learning during visual search was not 

phase-locked. 

Based on previous studies, we selected PO3/4, PO7/8, and O1/2 for further 
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analysis (Antonov et al., 2020; Wang et al., 2019). We were specifically interested 

in the tagging frequencies (2.4 Hz, 4.29 Hz, 5.45 Hz, 7.5 Hz), alpha frequencies 

(8 Hz, 9 Hz, 10 Hz, 11 Hz, 12 Hz), three control frequencies (20 Hz, 25 Hz, 30 

Hz; which was far from the tagging frequencies and alpha oscillation, avoiding 

potential impact from these key frequencies), and their comparisons.  

Cluster-based permutation test 

To correct multiple comparisons, we used a cluster-based permutation test 

against a null-distribution shuffled from 1000 iterations (following Monte Carlo 

randomization procedure). Specifically, one-sample t-tests were performed across 

participants for conditional differences against zero to identify above-chance activity, 

and time windows with t-values larger than a threshold (p = .05) were combined into 

contiguous clusters based on adjacency. The cluster statistics was defined as the sum 

of the t values within each cluster. The null distribution was formed by randomly 

permuting condition labels for 1000 times in order to get the largest clusters per 

iteration. Clusters were determined to be significant if the cluster statistics was larger 

than the 95th percentile of the null distribution. 

Results 

 Participants performed a visual search task, in which they were instructed to 

search for a unique shape (target) while ignoring a salient distractor (see Fig. 1A). In 

the baseline condition, the salient distractor was equally presented at all four locations. 

In the learning condition, the salient distractor was presented more often in either the 

top or bottom location (which was counterbalanced between participants; high-

probability location), while was equally presented in other three locations (low-

probability location), producing learned suppression on salient distractors. Notably, 

four gray placeholders that tagged at different frequencies before and after the search 

onset, and participants were explicitly told to ignore the tagging background (see 

Methods for details). 

Behavioral results 
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Incorrect trials, as well as trials on which the response times (RTs) were faster 

than 200 ms and slower than 2000 ms, or no response was given within 2000 ms, 

were excluded from analyses (1.29%). Mean RTs for different conditions are 

presented in Fig. 1D. In the baseline condition, compared with distractor-absent trials 

(1090 ms), paired t-tests revealed that the mean RTs were significantly larger for 

distractor-present trials (1129 ms), t(27) = 7.55, p < .001, d = 1.43, indicating capture 

by salient distractors. The results on error rates mimicked those for RTs. The error 

rates were higher for distractor-present trials (5.1%) than distractor-absent trials 

(3.8%), t(27) = 3.92, p < .001, d = 0.74. 

 

Figure 1. A) Experimental procedure. Each trial started with a fixation dot followed by four tagging 

placeholders for 1250 ms. Then the search array was presented with all tagging placeholders 

simultaneously for 2000 ms at different frequencies. Participants were asked to find the unique shape 

(in this case, the circle to the right) and report the orientation of the line inside (in this case, horizontal). 

Distractor present and absent trials were mixed within each block. B) Probabilities for distractor 

locations. In the baseline condition, the salient distractor was equally presented in four locations, with a 

probability of 25% each. In the learning condition, the salient distractor was presented in either the top 

or bottom location (which was counterbalanced between participants) with a probability of 66.25%, 

while was equally presented in other three locations with a probability of 11.25% each. C) Temporal 

sequence for different tagging placeholders at different frequencies, that is, 2.4 Hz, 4.29 Hz, 5.45 Hz, 

and 7.5 Hz (counterbalanced between participants). Each mini vertical bar represents a frame (16.7 ms), 

with the longer and short ones representing the onset and offset of the placeholders respectively. D) 

Mean response times (RTs) in the baseline and learning conditions. The gray solid dots represent 

individual RTs. Error bars show ±1 standard error of the mean (SEM). **p < .01, ***p < .001. 
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In the learning condition, with distractor condition (low-probability location, 

high-probability location and distractor-absent) as a factor, a repeated-measures 

ANOVA on mean RTs showed a main effect, F(2, 54) = 26.88, p < .001, partial η2 = 

0.5. Subsequent planned comparisons revealed larger mean RTs for a distractor 

presented in the high-probability location (1060 ms), t(27) = 4.76, p < .001, d = 0.9, 

and the low-probability location (1079 ms), t(27) = 6.4, p < .001, d = 1.21, compared 

to the distractor-absent condition (1038 ms). Crucially, there was a reliable difference 

between the high- and low-probability locations, t(27) = 3.37, p = .002, d = 0.64, 

suggesting that salient distractor was suppressed after learning its high-probability 

location. No significant effect for error rates was observed, F(2, 54) = 1.22, p = .303, 

partial η2 = 0.04. 

Overall, the results demonstrated the classic attentional capture effect by salient 

distractors (Lin et al., 2024; Theeuwes, 1992) and further indicated that this capture 

can be suppressed through the learning of statistical regularities regarding distractor 

locations (Wang & Theeuwes, 2018a, 2018b, 2018c). A recent study by Kerzel et al. 

(2022) suggested that reduced capture is not solely due to suppression of the high-

probability location but also results from increased interference from distractors at 

low-probability locations (i.e., distractor rarity). In this study, larger capture effects 

were observed at low-probability locations compared to equal-probability locations, 

which correspond to the baseline condition in the present study. However, in our study, 

the capture effect was similar at low-probability locations (41 ms) and in the baseline 

condition (39 ms). This discrepancy may stem from differences in the experimental 

design. Unlike the between-subjects design used by Kerzel et al., (2022), our within-

subjects design introduced the baseline condition before the learning condition, 

allowing participants to practice extensively before the learning condition. This 

practice likely reduced capture effects, particularly at low-probability locations. 

Nevertheless, this discrepancy does not undermine our conclusion that the high-

probability location was suppressed, a finding consistent with Kerzel et al. (2022).   

Notably, compared to previous studies that only four items had on display, we 
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observed much longer RTs (e.g., Wang & Theeuwes, 2020). One possible explanation 

is that the tagging frames may have reduced the visibility of the shapes, making the 

task more challenging and contributing to the slower RTs observed. 

Frequency tagging and alpha oscillation 

In Fig. 2A left panel, we depict the power spectra across frequencies averaged 

over the tagging period (from 0 to 3250 ms) for the baseline and learning conditions, 

as well as their differences. To validate the efficacy of frequency tagging and assess 

the role of alpha oscillation in the present study, we computed the average power for 

tagging frequencies (2.4 Hz, 4.29 Hz, 5.45 Hz, 7.5 Hz), alpha frequencies (8 Hz, 9 Hz, 

10 Hz, 11 Hz, 12 Hz), and three control frequencies (20 Hz, 25 Hz, 30 Hz). Notably, 

we did not employ tagging for the search elements; instead, the placeholders (i.e., the 

stimulus background) were tagged continuously throughout the trial, with participants 

explicitly instructed to ignore them. The background (i.e., tagging placeholders) 

served as a distraction for the search task. Previous studies have shown that enhancing 

attention to a stimulus causes the suppression of unattended (distracting) stimulus 

simultaneously (Andersen & Muller, 2010; Müller & Hübner, 2002), thereby leading 

to reduction in frequency power when tagging the unattended stimulus. Thus, we 

hypothesized that the power for tagging frequencies would be lower than zero, as the 

tagging placeholders were disregarded throughout the trial. Consistent with this 

hypothesis, the modulation of the tagging frequencies (averaged across frequencies) 

was significantly lower than zero, t(27) = 2.64, p = .014, d = 0.5. 

Subsequently, with frequency type (tagging-, alpha- and control frequencies) and 

condition (baseline vs. learning) as factors, a repeated-measures ANOVA revealed 

significant main effects for frequency type, F(2, 54) = 90, p < .001, partial η2 = 0.77, 

and condition, F(1, 27) = 15.63, p < .001, partial η2 = 0.37, along with a noteworthy 

interaction, F(2, 54) = 6.11, p = .004, partial η2 = 0.19 (see Fig. 1A right panel). 

Further planned comparisons revealed that, in both baseline and learning conditions, 

suppression for tagging frequencies was weaker than that for control frequencies, both 

ps < .001, indicating tagging responses towards different locations following tagging 
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placeholders. Additionally, alpha power exhibited a decrease relative to control 

frequencies, both ps < .001, signifying the involvement of alpha suppression in the 

present study.  

 Importantly, distinctions between baseline and learning conditions were evident 

for tagging frequencies, t(27) = 5.84, p < .001, d = 1.1, and alpha oscillation, t(27) = 

2.99, p = .006, d = 0.57, but not for control frequencies, t(27) = 1.05, p = .302, d = 0.2. 

This shows that both frequency tagging responses and alpha oscillation decrease after 

the distractor location can be anticipated compared to the baseline condition. 

Tracking high- vs. low-probability locations over time  

To explore the related neural activities associated with learned suppression, we 

initially calculated the power difference at each time point inside the tagging time 

window (0 – 3250 ms). This involved subtracting the power observed in the baseline 

condition from that in the learning condition, obtaining a pure learning effect 

characterized by relative changes in power. We categorized these power differences 

into three components: tagging responses tracking the high-probability location, 

tagging responses tracking other low-probability locations, and alpha oscillation 

separately. As depicted in Fig. 2B, as time progressed, tagging responses occurred in 

the intervals of 180 – 2238 ms and 2282 – 3192 ms for low-probability locations, 

while occurred in the interval of 1126 – 1862 ms for the high-probability location 

(cluster-based permutation test, p < .05; see Fig. S1 in Supplementary Information for 

the baseline condition), primarily falling within the pre-search time window (0 – 1250 

ms). Notably, the difference between tagging responses towards high- and low-

probability locations (referred to as the low-high difference, calculated by subtracting 

tagging responses towards those high-probability locations from that towards low-

probability location) occurred in the intervals of 714 – 1442 ms and 1580 – 2252 ms 

(cluster-based permutation test, p < .05; see Fig. 2C). This indicates that participants 

can discern the high-probability location from other low-probability locations even 

before the commencement of the search, by showing a stronger frequency power in 

tagging response towards the high-probability location. Moreover, alpha activity was 
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reduced in the learning condition in the intervals of 0 – 386 ms and 448 – 1812 ms 

relative to the placeholder onset (cluster-based permutation test, p < .05; see Fig. 2D). 

These results suggest proactive attentional mechanisms modulating high- and low-

probability locations separately. 

Additionally, this discrimination in tagging responses between high- and low-

probability locations aligns with participants’ behavioral responses. Utilizing a 

median-split based on behavioral indices of learning (i.e., mean RTs for presenting a 

distractor in low-probability locations minus those in the high-probability location), 

we categorized participants into “superior learners” and “inferior learners” (n = 14 for 

each group). The results unveiled that the significant low-high difference persisted for 

superior learners in the interval of 246 – 2192 ms, while became weak and did not 

reach significance for inferior learners (see Fig. 2E left panel). However, the pre-

search alpha activity existed for both superior learners (842 – 1598 ms) and inferior 

learners (720 – 1766 ms), with no significant difference detected between the two 

groups (cluster-based permutation test, p < .05; see Fig. 2E right panel). These 

findings underscore of the role of tagging responses in distinguishing high- and low-

probability locations within learned suppression. Yet, the role of alpha oscillation 

remains ambiguous. We will return to this discussion later.  
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Figure 2. A) Left panel shows the power spectra across different frequencies averaged over tagging 

period (from 0 to 3250 ms) for the baseline and learning conditions, and their difference, including 

tagging frequencies (2.4 Hz, 4.29 Hz, 5.45 Hz, 7.5 Hz), alpha frequencies (8 Hz, 9 Hz, 10 Hz, 11 Hz, 

12 Hz), and control frequencies (20 Hz, 25 Hz, 30 Hz). Right panel shows the averaged power for 

tagging-, alpha- and control frequencies in the baseline and learning conditions. The gray solid dots 

represent individual data. Error bars show ±1 SEM. **p < .01, ***p < .001. B) Time-varied changes 

(i.e., power difference obtained by subtracting the power observed in the baseline condition from that 

in the learning condition) for tagging responses towards high- and low-probability distractor locations. 

C) The low-high difference (obtaining by subtracting tagging responses towards high-probability 

location from these towards low probability locations) indicate the ability to discern the high-

probability location from other low-probability locations. D) Time-varied changes for alpha activity. E) 

The low-high difference (left panel) and alpha oscillation (right panel) for superior and inferior learners. 

Colored shadow areas represent ±1 SEM, and the horizontal lines represent significant clusters after 

cluster-based permutation test at p < .05. 
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Figure 3. The low-high difference (left panel) and alpha oscillation (right panel) for first and second 5 

blocks in the learning condition. 

 

Since we consistently administered the baseline condition before the learning 

condition, to avoid the potential influences from learned suppression, one might 

question whether the observed results above were attributable to factors such as 

fatigue, practice effects, or any consequences associated with the fixed testing order. 

To address this concern, we partitioned the 10 blocks in the learning condition into the 

first 5 and second 5 blocks. If the observed effects were linked to the testing order, 

differences between the first 5 and second 5 blocks would be anticipated. However, 

no such distinctions were observed for alpha oscillation or the low-high difference 

(see Fig. 3). Notably, we also applied an inverted encoding model (IEM; Foster et al., 

2016) to track the processing of target and distractor locations. Consistent with 

previous studies (e.g., van Moorselaar et al., 2020), our decoding results revealed that, 

through alpha activity, we could reliably track the target location but not the distractor 

location (see Fig. S2). 

 

Discussion 

 The present study aimed to investigate the neural mechanisms underlying the 

learned suppression of salient distractors using the frequency tagging technique (Ding 

et al., 2006; Malinowski et al., 2007; Morgan et al., 1996; Muller et al., 2003). 

Behaviorally, participants demonstrated proficient learned suppression, as evidenced 

by slower RTs for distractors presented in the high-probability location compared to 
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low-probability locations. Importantly, as observed in tagging responses and alpha 

oscillation, the results unveiled the anticipatory neural mechanism underpinning 

learned suppression. This was evidenced by stronger tagging responses towards the 

high-probability location relative to low-probability locations, as well as a general 

reduction in alpha power before the search onset. Additionally, the ability to 

differentiate the high-probability location from other low-probability locations before 

the search onset primarily observed in participants with better learning performance. 

 It is generally agreed that learned suppression acts on the spatial priority map 

which ultimately determines attentional selection in an all or nothing manner (Duncan 

et al., 2023; Fecteau & Munoz, 2006; Ferrante et al., 2018; Sprague & Serences, 

2013). This map represents a topographic space encoding the priority of individual 

locations by integrating signals from sensory input, current goals, and statistical 

learning (Theeuwes et al., 2022; Zelinsky & Bisley, 2015). According to this 

framework, if locations are likely to contain a target the location is up-regulated 

within the spatial priority map, whereas locations with a higher probability of 

containing distracting information are downregulated, resulting in the observed 

learned suppression.  

Noted that, in the present study, we did not employ tagging for the search 

elements; instead, the placeholders (i.e., the stimulus background) were tagged 

continuously throughout the trial, with participants explicitly instructed to ignore 

them. Unlike traditional frequency tagging research, which typically involves 

continuously tracking attention at a specific location (Ding et al., 2006; Morgan et al., 

1996), our experiment required participants to constantly shift their attention among 

four locations. Consequently, this setup led to a disconnect between the stimuli and 

their background. In other words, the background (i.e., tagging placeholders) served 

as a distraction for the search task. Previous studies have shown that enhancing 

attention to a stimulus causes the suppression of unattended (distracting) stimulus 

simultaneously (Andersen & Muller, 2010; Müller & Hübner, 2002), thereby leading 

to reduction in frequency power when tagging the unattended stimulus. This may 



Running head: Learned suppression with tagging responses 

 17

explain the negative power observed for tagging frequencies in our study (Fig. 2A), as 

the tagging placeholders were disregarded throughout the trial.  

Moreover, lower negative tagging responses to placeholders indicate that more 

attentional resources were allocated to suppressing placeholders (Andersen & Muller, 

2010; Müller & Hübner, 2002). Since, at any moment in time, the total amount of 

attentional resources is limited, allocating fewer resources to processing search 

elements leaves more available for suppressing placeholders. Thus, lower negative 

tagging responses to placeholders reflect fewer attentional resources directed toward 

processing search elements, a reversed pattern compared to processing placeholders. 

In the learning condition, compared to the baseline condition, participants likely 

allocated less attention to the task, as they had already learned the high-probability 

distractor location, resulting in more attention to processing placeholders by showing 

lower tagging responses. This was further evident in behavioral findings, where 

overall mean RTs in the learning condition (1057 ms) were significantly faster than in 

the baseline condition (1116 ms), p < .001, suggesting that the learning condition was 

generally easier for participants, requiring less attentional focus. Accordingly, the 

lower tagging frequency power observed at low-probability locations relative to high-

probability locations (Fig. 2C) indicates that participants allocated fewer attentional 

resources to processing stimuli at low-probability locations. Conversely, participants 

directed more attentional focus to stimuli presented at the high-probability location 

before the search onset. This anticipatory focus likely facilitated the suppression of 

the high-probability location immediately after search initiation. 

This finding appears to contradict earlier studies suggesting that learned 

suppression operates proactively, without requiring prior attentional deployment to 

distractor locations (Gaspelin et al., 2015, 2017; Huang et al., 2022; Kong et al., 

2020). For instance, Huang et al. (2022) demonstrated that in the context of statistical 

learning, reaction times to probes at high-probability distractor locations were already 

suppressed before display onset, consistent with proactive suppression. In contrast, 

more recent evidence challenges this view. Using a variant of the search-probe 
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paradigm similar to that of Huang et al. (2022), Chang et al. (2023) demonstrated that 

the high-probability location was suppressed relative to all other locations. However, 

despite this suppression during search, they observed enhanced—rather than 

reduced—probe discrimination accuracy at this location in the probe task. This 

suggests that the high-probability location was initially attended before it was 

suppressed supporting a reactive suppression mechanism (e.g., Beck et al., 2018; 

Makovski, 2019; Moher & Egeth, 2012; Won et al., 2019; Chang et al., 2023; Chen et 

al., 2025).  

Furthermore, Chen et al. (2025) employed the same task as we have used here 

while concurrently measuring micro-saccades, a well-established marker of covert 

attention. Consistent with the current and previous findings (Wang & Theeuwes, 

2018a, 2018b, 2018c), they found that the high-probability distractor location was 

suppressed relative to all other locations. Yet, this learned suppression was 

accompanied by increased micro-saccade rates prior to stimulus onset, directed 

toward the high-probability location. This indicates that covert attention was initially 

allocated to the distractor location before suppression occurred, providing strong 

evidence for a reactive suppression mechanism. Taken together, these findings 

consistent with the present results suggest that covert attention is first allocated to 

distractor locations before suppression is engaged, reinforcing the view that 

suppression mechanisms may operate reactively rather than purely proactively. 

Using EEG recordings, Wang et al. (2019) observed a relative increase in pre-

search alpha power for electrodes contralateral to the high-probability location, 

providing direct neural evidence for proactive learned suppression as well. However, 

this observation contrasts with findings from other related studies (Ferrante et al., 

2023; Noonan et al., 2016; van Moorselaar et al., 2020; van Moorselaar & Slagter, 

2019). For instance, a recent magnetoencephalography (MEG) study showed that pre-

stimulus neural excitability was reduced in the lateralized early visual cortex 

associated with the high-probability distractor locations, indicating the recruitment of 

proactive attentional mechanisms (Ferrante et al., 2023). However, Ferrante et al. did 
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not observe alpha activity linked to learned suppression. A possible explanation for 

this discrepancy is that the learned suppression mechanism may require more 

complex processing to effectively suppress upcoming distractors in more demanding 

search tasks, which could involve alpha oscillation to support learned suppression. 

This may not apply when search is relatively easy. Indeed, previous research indicates 

that the modulation of alpha power, indicative of distractor suppression, is influenced 

by the perceptual load (Gutteling et al., 2022). Ferrante et al. (2023) adopted a rapid, 

invisible frequency tagging method in a search task that was comparatively less 

challenging, potentially accounting for the lack of alpha oscillation effects observed in 

their study. While the current study observed proactive alpha activity, its role may 

differ from that of tagging responses associated with learned suppression. This 

distinction highlights the need for further research to clarify the specific contributions 

of alpha oscillations and tagging responses in learned suppression mechanisms. 

In sum, our findings provide direct neural evidence supporting the necessity of 

attending to distractor locations prior to suppression, indicating a reactive suppression 

mechanism. 
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