16. Lin, R., Meng, X., Chen, F., Li, X., Jensen, O., Theeuwes, J., & Wang, B. (2024). Neural Evidence for Attentional Capture by Salient Distractors. nature human behaviour, doi:https://doi.org/10.1038/s41562-024-01852-5 (pdf)
15. Zhang, Y., Yang, Y., Wang, B.*, & Theeuwes, J. (2022). Spatial enhancement due to statistical learning tracks the estimated spatial probability. Attention, Perception, & Psychophysics, 84(4), 1077-1086.doi:https://doi.org/10.3758/s13414-022-02489-0 (pdf)
14. Wang, L., Wang, B.*, & Theeuwes, J. (2021). Across-trial spatial suppression in visual search. Attention, Perception, & Psychophysics, 83(7), 2744-2752.,doi:https://doi.org/10.3758/s13414-021-02341-x (pdf)
13. Lin, R.#, Li, X.#, Wang, B.*, & Theeuwes, J. (2020). Spatial suppression due to statistical learning tracks the estimated spatial probability. Attention Perception & Psychophysics, doi:http://doi.org/10.3758/s13414-020-02156-2 (pdf)
12. Wang B.*, & Theeuwes J. (2020). Salience determines attentional orienting in visual selection. Journal of Experimental psychology. Human Perception and Performance, doi: http://doi.org/10.1037/xhp0000796. (pdf)
11. Wang, B.*, & Theeuwes, J. (2020). Implicit attentional biases in a changing environment. Acta Psychologica,206,103064. doi: http://doi.org/10.1016/j.actpsy.2020.103064 (pdf)
10. Kong, S., Li, X., Wang, B.*, & Theeuwes, J. (2020). Proactively location-based suppression elicited by statistical learning. Plos one, 15(6), e0233544. doi: http://doi.org/10.1371/journal.pone.0233544 (pdf)
9. Wang, B.*, van Driel, J., Ort, E., & Theeuwes, J. (2019). Anticipatory distractor suppression elicited by statistical regularities in visual search. Journal of Cognitive Neuroscience, 31 (10), 1535–1548. https://doi.org/10.1162/jocn_a_01433 (pdf)
8. Wang, B.*, Samara, I, & Theeuwes, J. (2019). Statistical regularities bias overt attention. Attention Perception and Psychophysics, 81 (6), 1813–1821. https://doi.org/10.3758/s13414-019-01708-5 (pdf)
7. Failing, M#, Wang, B.*#, & Theeuwes, J. (2019). Spatial suppression due to statistical regularities is driven by distractor suppression not by target activation. Attention Perception and Psychophysics, 81 (5), 1405–1414. https://doi.org/10.3758/s13414-019-01704-9 (#shared first authorship) (pdf)
6. Failing, M.#, Feldmann-Wüstefeld, T.#, Wang, B., Olivers, C., & Theeuwes, J. (2019). Statistical regularities induce spatial as well as feature-specific suppression. Journal of Experimental Psychology: Human Perception and Performance, 45 (10), 1291–1303. https://doi.org/10.1037/xhp0000660 (#shared first authorship). (pdf)
5. Wang, B.* & Theeuwes, J. (2018c). Statistical regularities modulate attentional capture independent of search strategy. Attention Perception and Psychophysics, 80 (7), 1763–1774. https://doi.org/10.3758/s13414-018-1562-3 (pdf)
4. Wang, B.* & Theeuwes, J. (2018b). How to inhibit a distractor location? Statistical learning versus active, top-down suppression. Attention Perception and Psychophysics, 80 (4), 860–870. https://doi.org/10.3758/s13414-018-1493-z (Highly cited paper in Psychology [Top 1%]) (pdf)
3. Wang, B.* & Theeuwes, J. (2018a). Statistical regularities modulate attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 44 (1), 13-17. doi: 10.1037/xhp0000472 (Highly cited paper in Psychology [Top 1%]) (pdf)
2. Wang, B., Yan, C., Klein, R., & Wang, Z.* (2018). Inhibition of return revisited: Localized inhibition on top of a pervasive bias. Psychonomic Bulletin and Review, 25 (5), 1861–1867. https://doi.org/10.3758/s13423-017-1410-9 (pdf)
1. Wang, B., Hilchey, M. D., Cao, X., & Wang, Z.* (2014). The spatial distribution of inhibition of return revisited: No difference found between manual and saccadic responses. Neuroscience Letters , 578, 128–132. doi:10.1016/j.neulet.2014.06.050 (pdf)
9. Wang, B*., Knapen, T., & Olivers, C. N. (2022). Visual Working Memory Adapts to the Nature of Anticipated Interference. Journal of Cognitive Neuroscience, 34(7), 1148-1163. doi:10.1162/jocn_a_01853 (pdf)
8. Liu, B., Li, X., Theeuwes, J., & Wang, B.* (2022). Long-term memory retrieval bypasses working memory. NeuroImage,119513. doi:https://doi.org/10.1016/j.neuroimage.2022.119513 (pdf)
7. Zhao, C., Li, X., Failing, M., & Wang, B.* (2022). Automatically binding relevant and irrelevant features in visual working memory. Quarterly Journal of Experimental Psychology. doi:https://doi.org/10.1177/17470218211053992 (pdf)
6. Li, X., Xiong, Z., Theeuwes, J., & Wang, B*. (2020). Visual Memory Benefits From Prolonged Encoding Time Regardless of Stimulus Type. Journal of Experimental psychology. Learning, Memory, and Cognition. doi: http://doi.org/10.1037/xlm0000847 (pdf)
5. Wang, B.*, Theeuwes, J., & Olivers, C.N.L. (2019). Momentary, offset-triggered dual-task interferencein visual working memory. Journal of Cognition. 2 (1): 38, 1-12. doi: https://doi.org/10.5334/joc.84 (pdf)
4. Wang, B.*, Theeuwes, J., & Olivers, C.N.L. (2018). When shorter delays lead to worse memories: Task disruption makes visual working memory temporarily vulnerable to test interference. Journal of Experimental Psychology: Learning, Memory, and Cognition. 44 (5), 722–733. https://doi.org/10.1037/xlm0000468 (pdf)
3. Wang, B.*, Yan, C., Wang, Z., Olivers, C.N.L., &Theeuwes, J. (2017). Adverse orienting effects on visual working memory encoding and maintenance. Psychonomic Bulletin and Review, 24 (4), 1261–1267. doi:10.3758/s13423-016-1205-4 (pdf)
2. Wang, B., Cao, X., Theeuwes, J., Olivers, C.N.L., & Wang, Z.* (2017). Separate capacities for storing different features in visual working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43 (2), 226-236. doi:10.1037/xlm0000295 (pdf)
1. Wang, B., Cao, X., Theeuwes, J., Olivers, C.N.L., & Wang, Z.* (2016). Location-based effects underlie feature conjunction benefits in visual working memory. Journal of Vision, 16 (11): 12, 1-13. doi:10.1167/16.11.12 (pdf)